Government polytechnic, Malkangiri

Lesson plan: Geotechnical Engineering

Discipline: Civil	Semester : 3 rd	
enginering	N. C	Name of Teaching faculty: BINOD JENA(PTGF)
Subject:	No. of days/ per	
Geotechnical	week	Semester from Date: 15/09/2022 To Date: 21/01/22023
Engineering	class	Schiester Iron Pate. 13/ 07/2022
88	alloted: 4	
Week	Class Day	Topics
		1. Introduction
1 ST	1 ST	1.1 Soil and Soil Engineering
	2 ND	1.2 Scope of Soil Mechanics 1.3 Origin and formation of soil
		2. Preliminary Definitions and Relationship
	3 RD	2.1 Soil as a three Phase system
	4 TH	2.2 Water Content, Density, Specific gravity
2 ND	1 ST	Voids ratio, Porosity, Percentage of air voids,
	2 ND	air content, degree of saturation, density Index,
	3 RD	Bulk/Saturated/dry/submerged density,
	4 TH	Interrelationship of various soil parameters
		3. Index Properties of Soil
3 RD	1 ST	3.1 Water Content
	2 ND	3.2 Specific Gravity
	3 RD	3.3 Particle size distribution: Sieve analysis, wet mechanical analysis, particle size distribution curve and its uses
	4 TH	3.4 Consistency of Soils, Atterberg's Limits, Plasticity Index, Consistency Index, Liquidity Index
		4. Classification of Soil
4 TH	1 ST	4.1 General 4.2 I.S. Classification
	2 ND	4.2 I.S. Classification, Plasticity chart
	3 RD	4.2 I.S. Classification, Plasticity chart
	4 TH	4.2 I.S. Classification, Plasticity chart
5 TH	1 ST	4.2 I.S. Classification, Plasticity chart
	2^{ND}	1.2 I.S. Classification, Plasticity chart
		2. Permeability and Seepage
	3 RD	5.1 Concept of Permeability, Darcy's Law, Co-efficient of Permeability,
	4 TH	5.2 Factors affecting Permeability.
6 TH	1 ST	5.2 Factors affecting Permeability.

	2 ND	5.3 Constant head permeability and falling head permeability Test.			
	3 RD	5.4 Seepage pressure, effective stress, phenomenon of quick sand			
	4 TH	5.4 Seepage pressure, effective stress, phenomenon of quick sand			
7 TH	1 ST	phenomenon of quick sand			
		3. Compaction and Consolidation			
	2^{ND}	6.1 Compaction: Compaction, Light and heavy compaction Test,			
	3 RD	Optimum Moisture Content of Soil			
	4 TH	Maximum dry density, Zero air void line,			
8 TH	1 ST	Factors affecting Compaction,			
	2 ND	Field compaction methods and their suitability			
	3 RD	6.2 Consolidation: Consolidation, distinction between compaction and consolidation.			
	4 TH	Terzaghi's model analogy of compression/ springs showing the process of consolidation – field implications			
9 TH	1 ST	Terzaghi's model analogy of compression/springs showing the process of consolidation – field implications			
		4. Shear Strength			
	2 ND	7.1 Concept of shear strength, Mohr- Coulomb failure theory			
	3 RD	Cohesion, Angle of internal friction,			
	4 TH	strength envelope for different type of soil,			
10 TH	1 ST	Measurement of shear strength, Direct shear test, triaxial shear test, unconfined compression test and vane-shear test			
	2 ND	Measurement of shear strength; Direct shear test, triaxial shear test, unconfined compression test and vane-shear test			
	3 RD	Measurement of shear strength;- Direct shear test, triaxial shear test, unconfined compression test and vane-shear test			
	4 TH	5. Earth Pressure on Retaining Structures Active earth pressure, ,			
11 TH	1 ST	Passive earth pressure			
	2 ND	Earth pressure at rest.			
	3 RD	Use of Rankine's formula for the following cases (cohesion-less soil only) (i) Backfill with no surcharge,			
	4 TH	Use of Rankine's formula for the following cases (cohesion-less soil only) (i) Backfill with no surcharge,			
12 TH	1 ST	Use of Rankine's formula for the following cases (cohesion-less soil only)			
		(ii) backfill with uniform surcharge			
	2 ND	Use of Rankine's formula for the following cases (cohesion-less soil only)			
		(ii) backfill with uniform surcharge 6. Foundation Engineering			
		o. Foundation Engineering			
	3 RD	9.1 Functions of foundations, shallow and deep foundation,			

13 TH	1 ST	different type deep foundations with sketches.
	2 ND	Types of failure (General shear, Local shear & punching shear)
	3 RD	Types of failure (General shear, Local shear & punching shear)
	4 TH	9.2 Bearing capacity of soil,
14 TH	1 ST	9.2 Bearing capacity of soil,
	2 ND	bearing capacity of soils using Terzaghi's formulae
	3 RD	bearing capacity of soils using Terzaghi's formulae
	4 TH	IS Code formulae for strip, Circular and square footings
15 TH	1 ST	IS Code formulae for strip, Circular and square footings
	2 ND	water table on bearing capacity of soil
	3 RD	9.3 Plate load test
	4 TH	standard penetration test