Lesson Plan:

(5periods per week, total 75 periods in SEM)

DISCIPLINE:	SEMESTER: 3 rd	NAME OF THE TEACHING FACULTY:	
Civil	Semester	P Sankar Rao	
Engineering		PTGF (Civil Engg.)	
SUBJECT:	NO. OF	SEMESTER FROM DATE:TO DATE:	
Structural	DAYS/PER	NO. OF WEEKS:15	
Mechanics	WEEK CLASSES		
	ALLOTTED:5		
Week	Class Day	Topics	
	1. Review Of Basic Concepts		
1 st	1 ST	1.1 Basic Principle of Mechanics: Force, Moment,	
-	2 ND	support conditions Conditions of equilibrium,	
	3 RD	C.G & MI, Free body diagram	
	4 TH	1.2 Review of CG and MI of different sections	
		2. Simple And Complex Stress, Strain	
	5 th	2.1 Simple Stresses and Strains	
2 nd	1 st	2.1 Simple Stresses and Strains	
	2 nd	2.1 Simple Stresses and Strains	
	3 rd	2.1 Simple Stresses and Strains	
	4 th	2.1 Simple Stresses and Strains	
	5 th	2.2 Application of simple stress and strain in engineering field	
3 rd	1 st	2.2 Application of simple stress and strain in engineering field	
	2 nd	2.2 Application of simple stress and strain in engineering field	
	3 rd	2.2 Application of simple stress and strain in engineering field	
	4 th	2.3 Complex stress and strain	
	5 th	2.3 Complex stress and strain	
4 th	1 st	2.3 Complex stress and strain	
	2 nd	2.3 Complex stress and strain	
	3 rd	2.3 Complex stress and strain	

	4 th	2.3 Complex stress and strain		
		3. Stresses In Beams and Shafts		
	5 th	3.1 Stresses in beams due to bending		
5 th	1 st	3.1 Stresses in beams due to bending		
	2 nd	3.1 Stresses in beams due to bending		
	3 rd	3.1 Stresses in beams due to bending		
	4 th	3.1 Stresses in beams due to bending		
	5 th	3.2 Shear stresses in beams:		
6 th	1 st	3.2 Shear stresses in beams:		
	2 nd	3.2 Shear stresses in beams:		
	3 rd	3.3 Stresses in shafts due to torsion		
	4 th	3.3 Stresses in shafts due to torsion		
		4. Columns and Struts		
	5 th	4.1 Columns and Struts, Definition, Short and Long columns, End		
		conditions,		
7 th	1st	Equivalent length / Effective length, Slenderness ratio,		
	2 nd	Axially loaded short and long column,		
	3 rd	Euler's theory of long columns, Critical load for Columns with		
		different end conditions		
		5. Shear Force and Bending Moment		
	4 th	5.1 Types of loads and beams		
	5 th	5.1 Types of loads and beams		
8 th	1 st	5.2 Shear force and bending moment in beams:		
	2 nd	5.2 Shear force and bending moment in beams:		
	3 rd	5.2 Shear force and bending moment in beams:		
	4 th	5.2 Shear force and bending moment in beams:		
	5 th	5.2 Shear force and bending moment in beams:		

9 th	1 st	5.2 Shear force and bending moment in beams:
	2 nd	5.2 Shear force and bending moment in beams:
	3 rd	5.2 Shear force and bending moment in beams:
	4 th	5.2 Shear force and bending moment in beams:
	5 th	5.2 Shear force and bending moment in beams:
		6. Slope and Deflection
10 th	1 st	Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.
	2 nd	Shape and nature of elastic curve (deflection curve); Relationship
		between slope, deflection and curvature (No derivation),
		Importance of slope and deflection.
	3 rd	Shape and nature of elastic curve (deflection curve); Relationship
		between slope, deflection and curvature (No derivation),
		Importance of slope and deflection.
	4 th	Shape and nature of elastic curve (deflection curve); Relationship
		between slope, deflection and curvature (No derivation),
		Importance of slope and deflection.
	5 th	Shape and nature of elastic curve (deflection curve); Relationship
		between slope, deflection and curvature (No derivation),
		Importance of slope and deflection.
11 th	1 st	Slope and deflection of cantilever and simply supported beams
		under concentrated and uniformly distributed load (by Double
		Integration method, Macaulay's method).
	2 nd	Slope and deflection of cantilever and simply supported beams
		under concentrated and uniformly distributed load (by Double
		Integration method, Macaulay's method).
	3 rd	Slope and deflection of cantilever and simply supported beams
	_	under concentrated and uniformly distributed load (by Double
		Integration method, Macaulay's method).
	4 th	Slope and deflection of cantilever and simply supported beams
		under concentrated and uniformly distributed load (by Double
		Integration method, Macaulay's method).

	5 th	Slope and deflection of cantilever and simply supported beams	
		under concentrated and uniformly distributed load (by Double	
		Integration method, Macaulay's method).	
		7. Indeterminate Beams	
12 th	1 st	7.1 Indeterminacy in beams, Principle of consistent	
		deformation/compatibility,	
	2 nd	7.1 Indeterminacy in beams, Principle of consistent	
		deformation/compatibility,	
	3 rd	7.1 Indeterminacy in beams, Principle of consistent	
		deformation/compatibility,	
	4 th	Analysis of propped cantilever, fixed and two span continuous	
		beams by principle of superposition,	
	5 th	Analysis of propped cantilever, fixed and two span continuous	
		beams by principle of superposition,	
13 th	1 st	Analysis of propped cantilever, fixed and two span continuous	
		beams by principle of superposition,	
	2 nd	Analysis of propped cantilever, fixed and two span continuous	
		beams by principle of superposition,	
	3 rd	Analysis of propped cantilever, fixed and two span continuous	
		beams by principle of superposition,	
	4 th	SF and BM diagrams (point load and udl covering full span)	
	5 th	SF and BM diagrams (point load and udl covering full span)	
		8. Trusses	
14 th	1 st	8.1 Introduction: Types of trusses	
	2 nd	Types of trusses	
	3 rd	statically determinate and indeterminate trusses	
	4 th	statically determinate and indeterminate trusses	
	5 th	degree of indeterminacy	
15 th	1 st	degree of indeterminacy	

	2 nd	stable and unstable trusses
	3 rd	stable and unstable trusses
	4 th	stable and unstable trusses
	5 th	stable and unstable trusses