Government Polytechnic, Malkangiri

Lesson plan: STRUCTURAL MECHANICS

Discipline:	Semester : 3 rd	
Civil enginering	: 3	Name of Teaching faculty: P SANKAR PATRO (PTGF)
enginering	No. of	Name of Teaching faculty. 1 SANKAR TATRO (1101)
	days/ per	
Subject:	week	Semester from Date: 15/09/2022 To Date: 21/01/22023
SM	class	10 2000 21/01/22020
	alloted: 5	
Week	Class	Tonics
week	Day	Topics
		1. Review Of Basic Concepts
1 st	1 ST	1.1 Basic Principle of Mechanics: Force, Moment,
	2 ND	support conditions Conditions of equilibrium,
	3 RD	C.G & MI, Free body diagram
	4 TH	1.2 Review of CG and MI of different sections
		2. Simple And Complex Stress, Strain
	5 th	2.1 Simple Stresses and Strains
2 nd	1 st	2.1 Simple Stresses and Strains
	2 nd	2.1 Simple Stresses and Strains
	3 rd	2.1 Simple Stresses and Strains
	4 th	2.1 Simple Stresses and Strains
	5 th	2.2 Application of simple stress and strain in engineering field
3 rd	1 st	2.2 Application of simple stress and strain in engineering field
	2 nd	2.2 Application of simple stress and strain in engineering field
	3 rd	2.2 Application of simple stress and strain in engineering field
	4 th	2.3 Complex stress and strain
	5 th	2.3 Complex stress and strain
4 th	1 st	2.3 Complex stress and strain
	2 nd	2.3 Complex stress and strain
	3 rd	2.3 Complex stress and strain
	4 th	2.3 Complex stress and strain
		Stresses In Beams and Shafts

	7.th	2.1 Stragger in because due to bonding
	5 th	3.1 Stresses in beams due to bending
5 th	1 st	3.1 Stresses in beams due to bending
	2 nd	3.1 Stresses in beams due to bending
	3 rd	3.1 Stresses in beams due to bending
•	4 th	3.1 Stresses in beams due to bending
•	5 th	3.2 Shear stresses in beams:
6 th	1 st	3.2 Shear stresses in beams:
	2 nd	3.2 Shear stresses in beams:
	3 rd	3.3 Stresses in shafts due to torsion
	4 th	3.3 Stresses in shafts due to torsion
		4. Columns and Struts
	5 th	4.1 Columns and Struts, Definition, Short and Long columns, End
		conditions,
7 th	1st	Equivalent length / Effective length, Slenderness ratio,
	2 nd	Axially loaded short and long column,
	3 rd	Euler's theory of long columns, Critical load for Columns with different end
		conditions
		5. Shear Force and Bending Moment
	4 th	5.1 Types of loads and beams
	5 th	5.1 Types of loads and beams
8 th	1 st	5.2 Shear force and bending moment in beams:
	2 nd	5.2 Shear force and bending moment in beams:
	3rd	5.2 Shear force and bending moment in beams:
	4 th	5.2 Shear force and bending moment in beams:
	5 th	5.2 Shear force and bending moment in beams:
9 th	1 st	5.2 Shear force and bending moment in beams:
	2 nd	5.2 Shear force and bending moment in beams:
	3 rd	5.2 Shear force and bending moment in beams:
	4 th	5.2 Shear force and bending moment in beams:
-	1	

	5 th	5.2 Shear force and bending moment in beams:
		6. Slope and Deflection
10 th	1 st	Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.
•	2 nd	Shape and nature of elastic curve (deflection curve); Relationship between
		slope, deflection and curvature (No derivation), Importance of slope and
	a1	deflection.
	3 rd	Shape and nature of elastic curve (deflection curve); Relationship between
		slope, deflection and curvature (No derivation), Importance of slope and deflection.
	4 th	Shape and nature of elastic curve (deflection curve); Relationship between
		slope, deflection and curvature (No derivation), Importance of slope and deflection.
•	5 th	Shape and nature of elastic curve (deflection curve); Relationship between
		slope, deflection and curvature (No derivation), Importance of slope and deflection.
11 th	1 st	Slope and deflection of cantilever and simply supported beams under
		concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	2 nd	Slope and deflection of cantilever and simply supported beams under
		concentrated and uniformly distributed load (by Double Integration method,
		Macaulay's method).
	3 rd	Slope and deflection of cantilever and simply supported beams under
		concentrated and uniformly distributed load (by Double Integration method,
		Macaulay's method).
	4 th	Slope and deflection of cantilever and simply supported beams under
		concentrated and uniformly distributed load (by Double Integration method,
		Macaulay's method).
	5 th	Slope and deflection of cantilever and simply supported beams under
		concentrated and uniformly distributed load (by Double Integration method,
		Macaulay's method).
		7. Indeterminate Beams
12 th	1 st	7.1 Indeterminacy in beams, Principle of consistent
		deformation/compatibility,

	2 nd	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility,
	3 rd	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility,
	4 th	Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition,
	5 th	Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition,
13 th	1 st	Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition,
	2 nd	Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition,
	3 rd	Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition,
	4 th	SF and BM diagrams (point load and udl covering full span)
	5 th	SF and BM diagrams (point load and udl covering full span)
		8. Trusses
14 th	1 st	8.1 Introduction: Types of trusses
	2 nd	Types of trusses
	3 rd	statically determinate and indeterminate trusses
	4 th	statically determinate and indeterminate trusses
	5 th	degree of indeterminacy
15 th	1 st	degree of indeterminacy
	2 nd	stable and unstable trusses
	3 rd	stable and unstable trusses
	4 th	stable and unstable trusses
	5 th	stable and unstable trusses