## **LESSON PLAN**

## (5periods per week, total 75 periods in SEM)

| DISCIPLINE: Civil Engineering | SEMESTER: 3 <sup>rd</sup> Semester | NAME OF THE TEACHING FACULTY:<br>P Sankar Rao                    |
|-------------------------------|------------------------------------|------------------------------------------------------------------|
|                               |                                    | PTGF (Civil Engg.)                                               |
| SUBJECT: Structural           | NO. OF DAYS/PER WEEK               | SEMESTER FROM DATE: 01/08/2023 TO                                |
| Mechanics                     | <b>CLASSES ALLOTTED:</b> 5         | DATE:                                                            |
|                               |                                    | NO. OF WEEKS:15                                                  |
| Week                          | Class Day                          | Theory Topic                                                     |
|                               |                                    | 1. Review Of Basic Concepts                                      |
| 1 <sup>st</sup>               | 1 <sup>st</sup>                    | <b>1.1</b> Basic Principle of Mechanics: Force,<br>Moment,       |
|                               | 2 <sup>ND</sup>                    | support conditions Conditions of equilibrium,                    |
|                               | 3 <sup>RD</sup>                    | C.G & MI, Free body diagram                                      |
|                               | 4 <sup>TH</sup>                    | 1.2 Review of CG and MI of different sections                    |
|                               | 2.                                 | Simple And Complex Stress, Strain                                |
|                               | 5 <sup>th</sup>                    | 2.1 Simple Stresses and Strains                                  |
| $2^{nd}$                      | 1 <sup>st</sup>                    | 2.1 Simple Stresses and Strains                                  |
|                               | 2 <sup>nd</sup>                    | 2.1 Simple Stresses and Strains                                  |
|                               | 3 <sup>rd</sup>                    | 2.1 Simple Stresses and Strains                                  |
|                               | 4 <sup>th</sup>                    | 2.1 Simple Stresses and Strains                                  |
|                               | 5 <sup>th</sup>                    | 2.2 Application of simple stress and strain in engineering field |
| 3 <sup>rd</sup>               | 1 <sup>st</sup>                    | 2.2 Application of simple stress and strain in engineering field |
|                               | 2 <sup>nd</sup>                    | 2.2 Application of simple stress and strain in engineering field |
|                               | 3 <sup>rd</sup>                    | 2.2 Application of simple stress and strain in engineering field |
|                               | 4 <sup>th</sup>                    | 2.3 Complex stress and strain                                    |
|                               | 5 <sup>th</sup>                    | 2.3 Complex stress and strain                                    |
| 4 <sup>th</sup>               | 1 <sup>st</sup>                    | 2.3 Complex stress and strain                                    |

Offe as



|                        | 2 <sup>nd</sup>                   | 2.3 Complex stress and strain                                               |  |
|------------------------|-----------------------------------|-----------------------------------------------------------------------------|--|
|                        | _                                 |                                                                             |  |
|                        | 3 <sup>rd</sup>                   | 2.3 Complex stress and strain                                               |  |
|                        | 4 <sup>th</sup>                   | 2.3 Complex stress and strain                                               |  |
|                        | 3. Stresses In Beams and Shafts   |                                                                             |  |
|                        | 5 <sup>th</sup>                   | 3.1 Stresses in beams due to bending                                        |  |
| 5 <sup>th</sup>        | 1 <sup>st</sup>                   | 3.1 Stresses in beams due to bending                                        |  |
|                        | 2 <sup>nd</sup>                   | 3.1 Stresses in beams due to bending                                        |  |
|                        | 3 <sup>rd</sup>                   | 3.1 Stresses in beams due to bending                                        |  |
|                        | 4 <sup>th</sup>                   | 3.1 Stresses in beams due to bending                                        |  |
|                        | 5 <sup>th</sup>                   | 3.2 Shear stresses in beams:                                                |  |
| <b>6</b> <sup>th</sup> | 1 <sup>st</sup>                   | 3.2 Shear stresses in beams:                                                |  |
|                        | 2 <sup>nd</sup>                   | 3.2 Shear stresses in beams:                                                |  |
|                        | 3 <sup>rd</sup>                   | 3.3 Stresses in shafts due to torsion                                       |  |
|                        | 4 <sup>th</sup>                   | 3.3 Stresses in shafts due to torsion                                       |  |
|                        | 4. Columns and Struts             |                                                                             |  |
|                        | 5 <sup>th</sup>                   | 4.1 Columns and Struts, Definition, Short and Long columns, End conditions, |  |
| 7 <sup>th</sup>        | lst                               | Equivalent length / Effective length, Slenderness ratio,                    |  |
|                        | 2 <sup>nd</sup>                   |                                                                             |  |
|                        | 2                                 | Axially loaded short and long column,                                       |  |
|                        | 3 <sup>rd</sup>                   | Euler's theory of long columns, Critical load for                           |  |
|                        |                                   | Columns with different end conditions                                       |  |
|                        | 5. Shear Force and Bending Moment |                                                                             |  |
|                        | 4 <sup>th</sup>                   | 5.1 Types of loads and beams                                                |  |
|                        | 5 <sup>th</sup>                   | 5.1 Types of loads and beams                                                |  |
| 8 <sup>th</sup>        | 1 <sup>st</sup>                   | 5.2 Shear force and bending moment in beams:                                |  |
|                        | 2 <sup>nd</sup>                   | 5.2 Shear force and bending moment in beams:                                |  |
|                        | 3 <sup>rd</sup>                   | 5.2 Shear force and bending moment in beams:                                |  |



|                  |   | 4 <sup>th</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|------------------|---|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | _ | 5 <sup>th</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
| 9 <sup>th</sup>  |   | 1 <sup>st</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|                  | - | 2 <sup>nd</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|                  | - | 3 <sup>rd</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|                  | _ | 4 <sup>th</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|                  | _ | 5 <sup>th</sup> | 5.2 Shear force and bending moment in beams:                                                                                                                    |
|                  |   |                 | 6. Slope and Deflection                                                                                                                                         |
| 10 <sup>th</sup> |   | 1 <sup>st</sup> | Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection. |
|                  | - | 2 <sup>nd</sup> | Shape and nature of elastic curve (deflection curve);                                                                                                           |
|                  |   |                 | Relationship between slope, deflection and curvature                                                                                                            |
|                  |   |                 | (No derivation), Importance of slope and deflection.                                                                                                            |
|                  |   | $3^{rd}$        | Shape and nature of elastic curve (deflection curve);                                                                                                           |
|                  |   |                 | Relationship between slope, deflection and curvature                                                                                                            |
|                  |   |                 | (No derivation), Importance of slope and deflection.                                                                                                            |
|                  |   | 4 <sup>th</sup> | Shape and nature of elastic curve (deflection curve):<br>Relationship between slope, deflection and curvature                                                   |
|                  |   |                 | (No derivation), Importance of slope and deflection.                                                                                                            |
|                  |   | 5 <sup>th</sup> | Shape and nature of elastic curve (deflection curve):                                                                                                           |
|                  |   |                 | Relationship between slope, deflection and curvature                                                                                                            |
|                  |   |                 | (No derivation), Importance of slope and deflection.                                                                                                            |
| 11 <sup>th</sup> |   | 1 <sup>st</sup> | Slope and deflection of cantilever and simply supported beams under concentrated and uniformly                                                                  |
|                  |   |                 | distributed load (by Double Integration method Macaulay's method).                                                                                              |
|                  |   | 2 <sup>nd</sup> | Slope and deflection of cantilever and simply<br>supported beams under concentrated and uniformly<br>distributed load (by Double Integration method             |
|                  |   |                 | Macaulay's method).                                                                                                                                             |



|                  | 3 <sup>rd</sup> | Slope and deflection of cantilever and simply                                  |
|------------------|-----------------|--------------------------------------------------------------------------------|
|                  | 5               | supported beams under concentrated and uniformly                               |
|                  |                 |                                                                                |
|                  |                 | distributed load (by Double Integration method,                                |
|                  | th              | Macaulay's method).                                                            |
|                  | 4 <sup>th</sup> | Slope and deflection of cantilever and simply                                  |
|                  |                 | supported beams under concentrated and uniformly                               |
|                  |                 | distributed load (by Double Integration method,                                |
|                  |                 | Macaulay's method).                                                            |
|                  | $5^{\text{th}}$ | Slope and deflection of cantilever and simply                                  |
|                  |                 | supported beams under concentrated and uniformly                               |
|                  |                 | distributed load (by Double Integration method,                                |
|                  |                 | Macaulay's method).                                                            |
|                  |                 | 7. Indeterminate Beams                                                         |
| 12 <sup>th</sup> | 1 <sup>st</sup> | 7.1 Indeterminacy in beams, Principle of consistent                            |
|                  | 1               | deformation/compatibility,                                                     |
|                  | 2 <sup>nd</sup> |                                                                                |
|                  |                 | 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, |
|                  | 3 <sup>rd</sup> |                                                                                |
|                  | 3               | 7.1 Indeterminacy in beams, Principle of consistent                            |
|                  | . th            | deformation/compatibility,                                                     |
|                  | 4 <sup>th</sup> | Analysis of propped cantilever, fixed and two span                             |
|                  | th              | continuous beams by principle of superposition,                                |
|                  | 5 <sup>th</sup> | Analysis of propped cantilever, fixed and two span                             |
| 4                |                 | continuous beams by principle of superposition,                                |
| 13 <sup>th</sup> | 1 <sup>st</sup> | Analysis of propped cantilever, fixed and two span                             |
|                  |                 | continuous beams by principle of superposition,                                |
|                  | 2 <sup>nd</sup> | Analysis of propped cantilever, fixed and two span                             |
|                  |                 | continuous beams by principle of superposition,                                |
|                  | 3 <sup>rd</sup> | Analysis of propped cantilever, fixed and two span                             |
|                  |                 | continuous beams by principle of superposition,                                |
|                  | 4 <sup>th</sup> | SF and BM diagrams (point load and udl covering                                |
|                  |                 | full span)                                                                     |
|                  | 5 <sup>th</sup> | SF and BM diagrams (point load and udl covering                                |
|                  |                 | full span)                                                                     |
|                  |                 |                                                                                |



| 8. Trusses             |                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup>        | 8.1 Introduction: Types of trusses                                                                                         |
| 2 <sup>nd</sup>        | Types of trusses                                                                                                           |
| 3 <sup>rd</sup>        | statically determinate and indeterminate trusses                                                                           |
| 4 <sup>th</sup>        | statically determinate and indeterminate trusses                                                                           |
| 5 <sup>th</sup>        | degree of indeterminacy                                                                                                    |
| 1 <sup>st</sup>        | degree of indeterminacy                                                                                                    |
| 2 <sup>nd</sup>        | stable and unstable trusses                                                                                                |
| 3 <sup>rd</sup>        | stable and unstable trusses                                                                                                |
| <b>4</b> <sup>th</sup> | stable and unstable trusses                                                                                                |
| 5 <sup>th</sup>        | stable and unstable trusses                                                                                                |
|                        | $ \begin{array}{c} 2^{nd} \\ 2^{nd} \\ 3^{rd} \\ 4^{th} \\ 5^{th} \\ 1^{st} \\ 2^{nd} \\ 3^{rd} \\ 4^{th} \\ \end{array} $ |

P. Sanker Rows 01.68.2023

Faculty signature

Civil Engineering Department

Principal Govt. Polytechnic Malkangiri