III-SEM./ELECTRICAL/ ETE/MECHANICAL /AUTO/AE & IE/CSE/IT /EEE/MECH(IND INTG)/ ELECTRICAL(INST &CTRL)/ 2021(W) BST-301 ENGINEERING MATHEMATICS -III

Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer **All** questions

2 x 10

- a. State Rouche's Theorem.
- b. Solve $(D^2 + 1)y = 0$
- c. Frame a partial differential equation for the function $z = (x a)^2 + (y b)^2$
- d. What is Gamma function? Find $\Gamma(-3.5)$
- e. Find $L^{-1}\left(\frac{3}{S+3}\right)$
- f. Define even and odd functions with examples.
- g. Write Newton Raphson formula to find \sqrt{N} .
- h. Evaluate $\Delta^2(e^x)$
- i. State Newton Cotes Quadrature Formula.
- j. Define Rank of a matrix.

2. Answer **Any Six** Questions

5X6

- a. Find the root of the equation $x^3 x 1 = 0$ correct to three places of decimal using Bisection Method.
- b. Find the Laplace Transform of

$$f(t) = \begin{cases} t, & 0 \le t < 3 \\ 5, & t \ge 3 \end{cases}$$

c. State the Convergence condition of Fourier Series.

Find
$$a_0$$
 of $f(x) = e^x in - \pi < x < \pi$

- d. Evaluate $\int_{1}^{3} \frac{1}{x} dx$ using Trapezoidal Rule taking h= 0.5
- e. Find f(2.8) using Newton's Backward Interpolation Formula

х	0	1	2	3
F(x)	1	2	11	34

- f. Solve $(D^2 + 3D + 2)y = xe^x \sin x$
- g Find the rank of the matrix $\begin{pmatrix} -1 & -2 & 3 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{pmatrix}$ by Row reduced Echelon form.
- 3 i) Find the Fourier Series of $f(x) = x + x^2 in(-\pi, \pi)$
 - ii) Solve $(D^2 10D + 25)y = 0$
- 4 i) Check the consistency and solve by Matrix method 5 2x+y+z=5 x+y+z=4 x-y+2z=1
 - ii) Evaluate $\int_2^6 \frac{1}{1+x^3} dx$ using Simpson's $\frac{1}{3} rd$ rule and taking h = 1
- 5 i) Solve the following partial differential equation x(y-z)p + y(z-x)q = z(x-y)
 - ii) Find $L(t \sin 3t)$ 5
- 6 i) Solve by Transform Method $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t \text{ with } x = 2, \frac{dx}{dt} = -1 \text{ at } t = 0$
 - ii) Solve $(D^2 1)y = x^2 e^x$
- 7 i) Using Interpolation estimate the output of a factory in 1986 from 5 the following data

year	1974	1978	1982	1990
Output in 1000 tones	25	60	80	170

ii) Find the Inverse Laplace Transform of $L^{-1}(log \frac{s^2+1}{s(s+1)})$ 5