LESSON PLAN

(5periods per week, total 75 periods in SEM)

DISCIPLINE : Civil Engineering	SEMESTER: 3 rd Semester	NAME OF THE TEACHING FACULTY:
		P Sankar Rao
		PTGF (Civil Engg.)
SUBJECT: Structural	NO. OF DAYS/PER WEEK	SEMESTER FROM DATE: 01.08.2023 TO
Mechanics	CLASSES ALLOTTED: 5	DATE: NO. OF WEEKS:15
Wash	Class Day	
Week	Class Day	Theory Topic 1. Review Of Basic Concepts
		1. Review of Basic Concepts
1 st	1 ST	1.1 Basic Principle of Mechanics: Force,
		Moment,
	2 ND	support conditions Conditions of equilibrium,
	3 RD 4 TH	C.G & MI, Free body diagram
	·	1.2 Review of CG and MI of different sections
	2.	Simple And Complex Stress, Strain
	5 th	2.1 Simple Stresses and Strains
2 nd	1 st	2.1 Simple Stresses and Strains
	2 nd	2.1 Simple Stresses and Strains
	3 rd	2.1 Simple Stresses and Strains
	4 th	2.1 Simple Stresses and Strains
	5 th	2.2 Application of simple stress and strain in
		engineering field
3 rd	1 st	2.2 Application of simple stress and strain in
		engineering field
	2 nd	2.2 Application of simple stress and strain in
		engineering field
	3 rd	2.2 Application of simple stress and strain in
		engineering field
	4 th	2.3 Complex stress and strain
	5 th	2.3 Complex stress and strain
4 th	1 st	2.3 Complex stress and strain

	2 nd	2.3 Complex stress and strain	
	3 rd	2.3 Complex stress and strain	
	4 th	2.3 Complex stress and strain	
		3. Stresses In Beams and Shafts	
	5 th	3.1 Stresses in beams due to bending	
5 th	1 st	3.1 Stresses in beams due to bending	
	2 nd	3.1 Stresses in beams due to bending	
	$3^{\rm rd}$	3.1 Stresses in beams due to bending	
	4 th	3.1 Stresses in beams due to bending	
	5 th	3.2 Shear stresses in beams:	
6 th	1 st	3.2 Shear stresses in beams:	
	2 nd	3.2 Shear stresses in beams:	
	3 rd	3.3 Stresses in shafts due to torsion	
	4 th	3.3 Stresses in shafts due to torsion	
	4. Columns and Struts		
	5 th	4.1 Columns and Struts, Definition, Short and Long	
		columns, End conditions,	
7 th	1st	Equivalent length / Effective length, Slenderness	
		ratio,	
	2^{nd}	Axially loaded short and long column,	
	3 rd	Euler's theory of long columns, Critical load for	
		Columns with different end conditions	
	5. Shear Force and Bending Moment		
	4 th	5.1 Types of loads and beams	
	5 th	5.1 Types of loads and beams	
8 th	1 st	5.2 Shear force and bending moment in beams:	
	2 nd	5.2 Shear force and bending moment in beams:	
	3 rd	5.2 Shear force and bending moment in beams:	

	4 th	5.2 Shear force and bending moment in beams:
	5 th	5.2 Shear force and bending moment in beams:
9 th	1 st	5.2 Shear force and bending moment in beams:
	2 nd	5.2 Shear force and bending moment in beams:
	3 rd	5.2 Shear force and bending moment in beams:
	4 th	5.2 Shear force and bending moment in beams:
	5 th	5.2 Shear force and bending moment in beams:
		6. Slope and Deflection
10 th	1 st	Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection.
	2^{nd}	Shape and nature of elastic curve (deflection curve);
		Relationship between slope, deflection and curvature
		(No derivation), Importance of slope and deflection.
	$3^{\rm rd}$	Shape and nature of elastic curve (deflection curve);
		Relationship between slope, deflection and curvature
		(No derivation), Importance of slope and deflection.
	4 th	Shape and nature of elastic curve (deflection curve);
		Relationship between slope, deflection and curvature
		(No derivation), Importance of slope and deflection.
	5 th	Shape and nature of elastic curve (deflection curve);
		Relationship between slope, deflection and curvature
		(No derivation), Importance of slope and deflection.
11 th	1 st	Slope and deflection of cantilever and simply
		supported beams under concentrated and uniformly
		distributed load (by Double Integration method,
		Macaulay's method).
	2 nd	Slope and deflection of cantilever and simply
		supported beams under concentrated and uniformly
		distributed load (by Double Integration method,
		Macaulay's method).

	3 rd	Slope and deflection of cantilever and simply
	3-	supported beams under concentrated and uniformly
		distributed load (by Double Integration method,
	4th	Macaulay's method).
	4 th	Slope and deflection of cantilever and simply
		supported beams under concentrated and uniformly
		distributed load (by Double Integration method,
		Macaulay's method).
	5 th	Slope and deflection of cantilever and simply
		supported beams under concentrated and uniformly
		distributed load (by Double Integration method,
		Macaulay's method).
		7. Indeterminate Beams
12 th	1 st	7.1 Indeterminacy in beams, Principle of consistent
12	1	deformation/compatibility,
	2 nd	7.1 Indeterminacy in beams, Principle of consistent
	2	deformation/compatibility,
	ard	
	$3^{\rm rd}$	7.1 Indeterminacy in beams, Principle of consistent
	.41.	deformation/compatibility,
	4 th	Analysis of propped cantilever, fixed and two span
		continuous beams by principle of superposition,
	5 th	Analysis of propped cantilever, fixed and two span
		continuous beams by principle of superposition,
13 th	1 st	Analysis of propped cantilever, fixed and two span
		continuous beams by principle of superposition,
	2 nd	Analysis of propped cantilever, fixed and two span
		continuous beams by principle of superposition,
	3 rd	Analysis of propped cantilever, fixed and two span
		continuous beams by principle of superposition,
	4 th	SF and BM diagrams (point load and udl covering
	·	full span)
	5 th	SF and BM diagrams (point load and udl covering
		full span)
		1 /

		8. Trusses	
14 th	1 st	8.1 Introduction: Types of trusses	
	2 nd	Types of trusses	
	3 rd	statically determinate and indeterminate trusses	
	4 th	statically determinate and indeterminate trusses	
	5 th	degree of indeterminacy	
15 th	1 st	degree of indeterminacy	
	2 nd	stable and unstable trusses	
	3 rd	stable and unstable trusses	
	4 th	stable and unstable trusses	
	5 th	stable and unstable trusses	