4TH SEM./ EEE /ELECTRICAL /ELECTRICAL(I & C) /EME / 2022(S)

Th4 Generation, Transmission and Distribution

		Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks			
1.		Answer All questions	2 x 1		
	a.	What is photovoltaic effect?			
	b.	Why transmission of electric power by high voltage DC is superior to that of high voltage AC system?			
	c.	State Kelvin's law.			
	d.	What are the factors affecting sag in an overhead line?			
	e.	Write the methods of reducing corona effect?			
	f.	What is a booster transformer?			
	g.	Write the characteristics of Tariff.			
	h.	Define diversity factor.			
	i.	What do you mean by Ferranti effect?			
	j.	Define voltage regulation.			
2.		Answer ANY SIX questions	6 x 5		
	a.	Describe the working of Nuclear power plant with proper sketch.			
	b.	Differentiate between EHVAC and HVDC system.			
	c.	Explain different connection schemes of distribution system.			
	d.	A two wire distribution AD is 225m long. The various loads and their positions are given below			
		At point Distance from A in Concentrated load in A			

At point	Distance from A in	Concentrated load i
	meters	
В	75	12
С	175	15
D	225	20

The cross sectional area of each conductor is 0.27 cm². The end A is supplied with 250 V. Resistivity of the wire is $1.78\mu\Omega$ cm. Calculate the current in each section of the conductor, the two core resistance of each section and the voltage at each tapping point.

- Describe Murray loop test for localization of earth fault in underground e. cables.
- f. Explain different types of insulator.

Full Marks: 80

0

Time- 3 Hrs

5

- g A generating station has following data
 Installed capacity= 300 MW, capacity factor= 50%, Annual load
 factor=60%, Annual cost of fuel, oil, etc= Rs. 9×10⁷, capital cost= Rs. 10⁹,
 annual interest & depreciation= 10%. Calculate minimum reserve capacity
 of the station and the cost per kWh generated?
 - a. Define Sag.

3

6

7

b. A transmission line has a span of 250m between supports, the 08 supports being at same level. The conductor has a cross-sectional area of 1.29 cm². The ultimate strength is 4220 kg/cm² and factor of safety is 2. The wind pressure is 40 kg/cm². Calculate the height of the conductor above ground level at which it should be supported if a minimum clearance of 7m is to be kept between the ground and the conductor.

02

03

07

 5×2

A 3 phase, 50 Hz overhead transmission line has following constants 10
 Resistance/phase=9.6 ohm, Inductance/phase= 0.097mH,
 Capacitance/phase=0.765μF

If the line is supplying a balanced load of 24000 KVA 0.8 p.f lagging at 66 KV, using nominal π method Calculate

- i. Sending end current
- ii. Line value of sending end voltage
- iii. Sending end power factor
- iv. Percentage regulation
- v. Transmission efficiency.
- 5 A three phase ring main ABCD fed at A at 11 KV supplies balanced loads of 10 50A at 0.8 p.f lagging at B, 120A at unity p.f at C and 70A at 0.866p.f lagging at D, the load currents being referred to the supply voltage at A. The impedances of the various sections are: Section $AB=(1+j0.6)\Omega$; Section $BC=(1.2+j0.9)\Omega$; Section $CD=(0.8+j0.5)\Omega$;

Section $AB = (1+j0.6)\Omega^2$, section $BC = (1.2+j0.9)\Omega^2$, section $CD = (0.8+j0.5)\Omega^2$, Section $DA = (3+j2)\Omega$. Calculate the currents in various sections and station bus-bar voltages at B, C & D.

- a. State different type of Bus-bar arrangements in substation.
 - b. Draw the layout of 66/11 KV substation.
- Write short notes on
 - a. Necessity of EHVAC Transmission.
 - b. Laying of Underground cables.